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A uniformly differentiable approximation scheme
for delay systems using splines

K. ITo'and F. KaPPEL?

Center for Control Sciences, Brown University
and
Institute for Mathematics, University of Graz

Abstract. A new spline-based scheme is developed for linear retarded functional differential
equations within the framework of semigroups on the Hilbert space R™ x L?. The approxi-
mating semigroups inherit in a uniform way the characterization for differentiable semigroups
from the solution semigroup of the delay system (e.g. among other things the logarithmic
sectorial property for the spectrum). We prove convergence of the scheme in the state spaces
R" x L? and H!. The uniform differentiability of the approximating semigroups enables us
to establish error estimates including quadratic convergence for certain classes of initial data.
We also apply the scheme for computing the feedback solutions to linear quadratic optimal
control problems.

1. INTRODUCTION AND PRELIMINARIES

I this paper we consider the linear hereditary control system

(1)

{ 0

ZA,-r(f +6,) +/ A(6)x(t + 6)d6 + Bu(t). t>0.

(1.1) i=0 -
z(0)=n. x(0) = () a.e. on [-r,0),

y(t) = Cx(t). t >0,

where —r =0 < --- < 6y = 0, x(t) € R", u(t) € R™ and y(t) € R”. Furthermore. A(-)
is an n X n matrix valued square integrable function on [—r.0]. It is well-known that for
(.y) € Z =R" x L*(-=r.0:R") and u € L% (0.0c:R™) system (1.1) admits a unique
solution r € L*(—=r.T:R")N HY(0.T;R") for any T > 0. We define the operators S(t).
t >0, by

S(t)(n’sp):(r(t)ax()w t20’ (T],C,’))e Z,
where r(t) is the solution of (1.1) with initial data (»,¢) and u(t) = 0. The segment z,
is defined by z,(8) = z(t + 8), —r < 6 < 0. The family S(-) is a strongly continuous
semigroup on Z with infinitesimal generator A given by (see for instance [6] or [25])

dom A= {(n,0) € Z|¢€H(-r,;R"), n=(0)},
A(p(0),¢) = (Lp,3) for (¢(0),¢) € dom A,

"Work done by this author was supported by AFOSR under Contract No. F-49620-86-C-0111 by NASA
under Grant No. NAG-1-517 and by NSF under Grant No. UINT-8521203.

*Work done by this author was supported by AFOSR under Graut No. 84-0398 and by FWF(Austria)
under Grants $3206 and P6005.
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where for continuous ¢
¢ 0
L) =Y Al6) + [ 4(O)0(6)ds.
1=0 -r
If we define the input operator B: R™ — Z and the output operator C: Z — R? by

Bu = (Bu,0), u€R™,

(1:2) C(n,p)=Cn, (n,9)€ Z,

then (1.1) is equivalent to the following abstract system in Z:

() = Az(t)+ Bu(t), t20, 2(0)={(n¢)

(1:3) y(t) =C=(1), 120,

More precisely. a function z: [0,00) — R" is a solution of (1.1) if and only if the function
z(t) = (z(t),x¢), t 2 0, is a2 mild solution of (1.3), i.e.,

t
(1.4) z(t) = S(t)(n.¢) +/ S(t — s)Bu(s)ds, t>0.
0

We shall frequently make use of the following facts: The spectrum of A is only point
spectrum and A € o(A) if and only if det A(X) = 0, where (I, is the n x n identity matrix)

A(XN) =M, - L(e'],), MeC.
The resolvent of A is given by (p(.A) denotes the resolvent set of A)

(AT — A7 (o) = (4(0),¢). A€ p(A).

where

0
$(6) = (0) + / MO-D(s)ds, —r <6<0,
(1.5) 8

¥(0) = A\)7! (77 + L([Oex("’)ga(s)ds)).

Together with the solution semigroup S(-) we shall need the adjoint semigroup S(-)*.
Its infinitesimal generator A* is given by (see for instance [6,25])

dom A" = {(y.¢") € Z | w € H'(-r,0;R") and ¢"(=7) = ATy},

(1.6
) A'(y.v) = (¢(0) + AJy. AT ()y — w) for (y,¢") € dom A°.

where w = ¢ + E,{;: A:ry\[—r.a.-). \ A1 denoting the characteristic function of a set M.
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We shall also use the state space H! = H'(—r,0; R") for system (1.1). Endowed with
the inner product

(2 ¥ = (2(0), ¥(0))rn + (P4 12

H'! is isomorphic to dom A with the graph norm. The isomorphism ¢: dom A — H! is
given by

(p(0),9) = ¢ for (¢(0),¢) € dom A,

(1.7) _
o = (p(0),p) for p € H'.

Since S(t), t > 0, restricted to dom A forms a Cq-semigroup on dom.A {with the graph
norm),

S(t) =Sy, t>0,

defines a Cp-semigroup on H!. In fact, $(t)p = z,, where z(t) is the solution of (1.1) with
u = 0 and initial data (¢(0), ) € dom A.

If we observe taat fO'S(t — s)Bu(s)ds = (z(t),z4) for t > 0 and u € L% (0,00;R™),
where z(t) is the solution of (1.1) with initial data n = 0, ¢ = 0, then it is not difficult to
see that

t— /O'S(t — 8)Bu(s)ds

defines a continuous map into dom A with

!
l(/ S(t— .&S)BU(s)d.slHl < m(t)|u|p2¢0,6,R™)
0

for t > 0, where m: Rt — R* is a nondecreasing function. Hence (1.1) with 5 = ¢(0).
¢ € H, is also well-posed in H!. In fact.

t
(1.8) Ty =1:(1‘)=.§'(t);,:+1/ S(t — s)Bu(s)ds, t>0.
0

where z(t) is given by (1.4) and z(t) is the solution of (1.1) with initial data (¢(0),y) €
dom A.

Approximation of hereditary control systems by ODE-systems has some history already.
In [2] the approximating systems were obtained by using the so-called averaging projec-
tions, i.e., projections onto a subspace of step-functions. The proof of convergence as in
almost all of the following papers was based on a version of the Trotter-Kato theorem in
semigroup theory. In order to get higher rates of convergence in [3] a scheme was devel-
oped which uses first order or cubic splines as approximating elements. If one considers
minimization of a quadratic cost criterion for system (1.1) a very desirable property of an
approximation scheme is that also the adjoints of the approximating semigroups converge
strongly to the adjoint of the solution semigroup of the delay system [7]. The AV-scheme
developed in {2] has this property whereas the spline scheme developed in [3] does not have
it. Therefore in [15] a different spline scheme was presented where also strong convergence
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of the adjoint semigroups is guaranteed. In contrast to the AV-scheme [22] the spline
scheme of [15] does not have the property that exponential stability of the delay systems
guarantees uniform (with respect to the approximation parameter) exponential stability
of the approximating systems. This spline scheme still has the property of uniform output
stability [16] which is enough in order to deal with the infinite time horizon problem for
(1.1) [17). In [12,13,10] a scheme using Legendre polynomials as approximating elements
was developed. The construction is based on Lanczos’ tau-method. The scheme has all
the qualitative properties which are stated above to be true for the AV-scheme. Also using
Legendre polynomials a different scheme was developed in [14] using the basic ideas of
[15). Numerical evidence indicates that this Legendre-scheme has analogous properties as
the Legendre-tau-scheme of [12], but uniform exponential stability for the approximating
systems has not been established yet. Using piecewise linear functions in [21] a scheme
was developed in the spirit of [15] which also has all the gqualitative properties mentioned
above for the AV and Legendre-tau schemes. In all the papers mentioned up to now no
convergence rates have been established or only convergence rates which obviously are
not optimal. For instance in {3] only linear convergence for smooth data in case of first
order splines is established. In a recent paper [19] I. Lasiecka and A. Manitius gave for
the first time optimal rates for the AV-scheme. These estimates are essentially based on
uniform (with respect to the approximation parameter) differentiability of the approxi-
mating semigroups, which means that the characterization of differentiable semigroups in
[20; Theorem 4.7] is uniformly valid for the approximating semigroups.

In this paper we develop a scheme using first order splines which essentially has all the
good properties of the AV-scheme. In addition we are able to establish error estimates
analogous to those in [19]. Naturally uniform differentiability is also the essential basis
for our approach which as far as convergence rates and uniform exponential stability are
concerned is motivated by the ideas of [19].

In Section 2 we give the basic ideas for the construction of the approximation scheme
using two sequences of subspaces leading to two sequences of approximating semigroups
in RV x L? resp. dom.A. We also give matrix representations for the approximating
generators and the approximating input resp. output operators. Furthermore we compute
the resolvent operator for the approximating generators. In Section 3 we prove convergence
of the approximating semigroups in both spaces by applying a version of the Trotter-Kato-
Theorem for Cy-semigroups. For the scheme in the state space Z we get also strong
convergence of the adjoint semigroups. One should be aware of the simplicity of the
consistency arguments given in Subsection 3.2 for the approximating semigroups and their
adjoints. Note that strong convergence also for the adjoint semigroups is needed for the
proof of Theorem 7.5. The results of Section 4 are fundamental for the rest of the paper.
In this section we prove that the approximating semigroups are differentiable uniformly
with respect to N. This allows to use the ideas of {19] for the proof of uniform exponential
stability and for proving rate estimates. Uniform exponential stability is established in
Section 5, whereas rate estimates are given in Section 6. Implications of the convergence
results for the approximation of the linear-quadratic optimal control problem on the infinite
time interval are discussed in Section 7. Finally, in Appendices A and B we collect some
of the more technical estimates used in Sections 4-6, respectively.




2. FORMULATION OF THE SCHEME

In this section we define the spline approximation scheme and prove some basic prop-

erties. Let tiv = —kr/N, k =0,...,N, and tN, = 0, t,’t;ﬂ = —r for N =1,2,... .
With BL{", k =0,...,N, we denote the usual first order basis splines on the interval [-r,0]

corresponding to the mesh t(’f, e ,t%,
N N 4 N
-l ) forth <6<ty
BN@)={ BN, -6) fortN <<ty
0 elsewhere.

Furthermore we put
Ei\I:X[t:’,tf_‘ﬁ k=1,...,N,

and L .
Ed\ = (In.o)a E? =(0»E£\I’1)3 k= 1"""‘7\"

The following spaces will be used in the sequel:
W~ =span(ENI,,...,E¥I,) c L*(~r,0:R").
ZY¥ =R" x WN = span(E[..... EX)cC Z.
XV =span(ByI,....,BNI,) C H'.
ZY ='XN c dom A

It is convenient to introduce the “basis matrices”

EN =(ENI,---EXI,).
EN = (Ey ---EN),
BY = (B3 I,---ByI,).
T'BY = ((T'B I, - 'BR L)
Any z = (n.p) € Z~ can be written as = = (1, ENa") = E‘Vcol(n.af:....,a%), where

aV¥ = col(af',....a‘k:). ay € R", is the coordinate vector of ¢ € N with respect to
the basis EN. Similarly any ¢ € XV is given by ¢ = BNb™ with bV = col(by,...,bN),
oY € R".

The orthogonal projections PY: Z — Z~ and P;*: H' — X" are characterized in
LEMMA 2.1. a) For (n,¢) € 2

N
. N e .
i.\:T p(s)yds, k=1,...,N.

PNz =(n,ENa"), where a
0

b) For ¢* € H!

PNv =B 6N, where WY =w(tl), k=0..... N

)




PROOF: The results follow by easy computations from (z — PNz, E{‘)z =0,k=0,....N,
and (y — P]N1,", Bf'In)Hx =0,k=0,...,N, respectively. §

Remark. The subspaces Z were used for the socalled scheme of averaging projections
introduced in [2], whereas Z¥ are the spline subspaces of [3]. Note that (™! P> is not the
orthogonal projection dom A — Z}¥ with respect to the inner product in Z.

By definition of the spaces Z¥, ZV and the operators A, B we have

AzN € ZV  for any zNEZIN,

2.1
1) B¢ e ZN for any £ € R™.

For a mild solution z(t), t > 0, of (1.3) as given by (1.4) we seek an approximation
wN(t) € ZN,t > 0. If z(t) is a strong (i.e., differentiable) solution of (1.3) then 3(t) is in
general not in dom A but in the subspace generated by Az(t) + Bu(t). By (2.1) we have
Aw™(t) + Bu(t) € ZN, t > 0. On the other hand v (#) is in Z) C dom A. The above
consideration concerning strong solutions of (1.3) motivate to determine w™ (¢) such that

(2.2) PYuN(t) = %PNwN(t) = Aw™ (t) + Bu(t), t>0.
Remark. If instead of (2.2) one imposes the condition

N (1) = PV (Auw? () + Bu(t). 120,

one oblaius ihe spline scheme of [3] whicli lacks a namber of qualitative properties one
would like to have (see the introduction).
In order to derive a differential equation for the coordinate vector of w™ (¢) we shall need

LEMMA 2.2. &) PV restricted to Z}\ is a bijection Z;{¥ — Z~. Its matrix representation
(with respect to the basis «=' B™ of Z;¥ and the basis EN of Z" ) is given by

1 0 - ... 0
1/2 12 :
QN — 0 . . . . @In € Rn(N+l)xn(.’\'+l).
o -~ 0 1/2 1/2
b) A restricted to Z¥ is a map Z;¥ — Z" with the matrix representation
Dy - .. D,’C, 0 -+« oo .. D
0o -~ --- 0 1 -1 0 - 0
HN_: +:{\_ 0 G‘InéR"(‘\'“)x"mH)
. . r .
: 0
0 0 0 0o 1 -1
6




where DY = L(ByY) = Y5_, A;BY (6;) + [ A(6)BY(8)d6, k =0.... . N.
c¢) The matrix representation of B considered as a map into Z* is

B

B.’\' — 0 € Rn(N+l)xm

0
whereas the matrix representation of C restricted to ZVN is
CN=(C 0 --- 0)eRPXMN+D

PROOF: For = = (2(0). ) € Z]‘"\. with ¢ = BMbN we get (using Lemma 2.1.a)) Pz =
(n.ENaV), where n = £(0) = bo\ and

- . N N
SN ar = XS BN @) d8 = 2, 4 b)), k=1
ak_ r )(—TZ' . k() _c)(k—1+k)‘ = dil...... .
1=0 G -

r h
LA

Part b) follows from easy computations using the definition of A and part c) is trivial. §
Let LY = (P'\'Izi\- )71, AN = ALY and put zV(t) = PYuw™(t). t > 0. Then (2.2) is
equivalent to

(2.3) Ny = ANV () + Bu(t). t>0.

A" is an operator Z~ — Z~. Note that (2.3) is an ordinary differential equation on Z-.
In view of Lemma 2.2 the matrix representation A~ of A"V is given by

(24) ‘4.\' — H.\'(QA\‘)—].

Let b (¢) and a™(t) be the coordinate vectors of w™(f) and zV(t). respectively. i.e..
w™(t) = BYb (t) and :N(t) = ENa™(t). Then

a™(t) = QVbN(t), t>0,

and equations (2.2) and (2.3) are equivalent to

(2.5) QNN (t) = HNON(t) + BNu(t). t>0,
and
(2.6) aN(t) = AVaN(t) + BNu(t). t>0.
respectively.
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Remarks. 1. If 47! exists, then AZ}Y = ZV. Hence. the approximation scheme given
in this paper is equivalent to the scheme developed in (9] for the approximation of the
spectrum of A using first order splines.

2. The approximation scheme developed here can be regarded as a spline-tau approxi-
mation (in the sense of Lanczos’ so-called tau-method). In {12,13,10] the Legendre-tau
approximation for delay systems was developed using Legendre-polynomials instead of
splines for the definition of the spaces ZN and X". The Legendre-tau scheme was formu-
lated in a similar manner as above (see equations (2.3) and (2.4) in [10]).

3. Using different spline elements for the definition of the subspaces Z¥ and XV one
can get a whole family of approximation schemes using the ideas presented in this paper.
We conjecture that some of them lead to approximations of the characieristic equation of
the delay systems by functions which involve the Padé approximations of the exponential
function in the main diagonal of the Padé table (see the remarks before Lemma 2.4)

For the proof of convergence for the scheme presented in this section we shall need an

explicit representation for the resolvent operators (Al — 4™ )~!. We introduce the function
1-1/2
T)= . TeC. 1#2
ur) 1+7/2 #

which is the first non-constant entry in the main diagonal of the Padé table for ¢~7 (cf.
[1]). Next we define

N

(2.7) ex(f) = Z (O)u(r ANV —r <E<0. A#£ —2N/r.

which is an approximation to €*® on [~r,0] and put
AN N = M, — L(ex I,). A # —2N/r.
PrROPOSITION 2.3. a) A complex number A\ £ —2N/r is in o(A™ ) if and onlv if
det AM(A) = 0.
b)Let ¢ 0(AY). A # —2XN/r and =z = (n.E~a™) € Z~. Theu
(AT = AM)™ 'z = PM(0(0).v")

where . _ . '
©(0) = AN (n+ L(7Y)), ¢ =edu(0)+ 7N

with

™ (8) =

[N e

N k
-\-( +u(rA/N)) Y BY(8) ) p(rA/N)* o
‘ k=1 1=1

N k
= —7:— Z B, (6) Z

(y(m/_\’)"—f " ,l(rA/.\')"-J“)aj’.
k=1 1=1

| —




PROOF: Given : € ZV we solve the equation (A\] —~ AV ju = . v = ENeN e ZN. This
equation is equivalent to (see (2.4))

(2.8) (AQY - HM)QY)™eN =a”,

We put b = (QN)~1cV, ie.. w = PV 1y with o = BNbN. The definitions of Q~ and
H™ (see Lemma 2.2) nnmedxateh sho“ that (2.8) is equivalent to

N
(2.9) Ay = > DYb = ag,
k=0
T’A A ! .
(2.10) (1+355 )b =(i-3x — )b, + Na{:, k=1,...,N.

If A # —2N\/r then (2.10) is equivalent tc

u(rA /NI a

M».

by = u(rA/NV by + ,,——(1+u (rA/N))

(2.11) "

oo
Sn

=X + MY, k=1,...,

Therefore in case A # —2N/r equations (2.9) and (2.10) are equivalent to (2.11) and

N k
AN =0+ ‘)_T\_(l + ulrA/N)) Z DY Zﬂ(:v\/.\')k”a}'
- k=1 i=1
=n+ L(tY).

This proves that A # —2N/r is m a(A ) if and only if det A N(A) = 0 \Ioreover. we
immediately see that for A € o(AY). A # —2\/r, the element (A — AN )71z s given as
stated in the proposition. i

Remarks. 1. Using the definition of ¢3 we see that

0
(2.12) M) =/ Xty — s)EN(s)a™ ds
ty
i.e.. 7™ is the interpolating spline for the function § — f:ef\\.((? - $)EN(s)a ds.
2. In case A = —2N/r equations (2.10) are equivalent to
N r rA N L .
bk ——R:(l—‘_)_‘\_) ak+l. k_OqﬂA__l

This together with (2.9) gives

. . r r
D:'l){::—-ao\ _-’—\—.(1——;'?) ( ZD‘ (lk-f'l)




Therefore A = —2N/r is in 0(A"N) if and only if det DY = 0. In case A(:) = 0 and N
sufficiently large this is equivalent to det A; = 0, a condition which is equivalent to the
existence of so-called small solutions for the uncontrolled delay system (see [8]).

3. In the single delay case L() = App(0) + A;o(—r) we have

1-r)/2N

N
i Al —2N/r.
1+T/\/2]\'> Als A# /7‘

AN =M, — A — (

For the other schemes discussed in the introduction AN(}) in this simple case is given
by AN(X) = AL, — A¢ ~— fN(M)A,, where fN¥()) is a rational approximation for e=*".
For the scheme of averaging projections we have fN()) = (1 + Ar/N)~V (see [2]) for the
Legendre-tau scheme of [12] f¥()) is the N-th entry in the main diagonal of the Padé
table for e=*", whereas for the Legendre-scheme of [14] f¥()) is the proper rational entry
at position (N, N — 1) in the Padé table for e=*". For the piecewise linear scheme of [21]

. FN _ 6—~2rA/N N 6—2 . . . -
we have f*()\) = (6+4r/\/1\'+(/r/\/‘\‘)7) (note that z2=2" is a Padé approximant for e™7).

In case of the scheme developed in {15] f¥ () cannot be given explicitely but is obtained
by a recursion formula.

For later use we state a simple observation:

LEMMA 2.4. Let 4 = Zf=o (4, + ffr[_4(9)|d9. Then det AN(X) # 0 for all A € C with
Red >0, A >4, N =1,....

PROOF: Obviously |(1 — rA/2N)(1 + rA/2N )71 < 1 for Re A > 0. Therefore [e} (6)] < 1
for ReA > 0 and —r < 6 < 0 (see (2.7) for the definition of €} (8)). Thus

¢
lZA,cf(e,) + /0 .4(9)61\'(9)0’9‘ <1
1=0 -r

and the result follows from

£
AN (M) = ,\(1,, - %(Z A€} (6)) +/
1=0

0

A(o)ef(e)de)) 1

-r
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3. CONVERGENCE OF THE SCHEME

In this section we establish convergence of the approximation scheme presented in the
preceding section for both state spaces, Z and H'. Moreover, we also prove strong con-
vergence of the adjoint semigroups SV(t)* to S(¢)* in the state space Z. We first consider
convergence in Z. For that purpose a version of the Trotter-Kato theorem as given in [15]
will be used.

Let (YV,|| - |In) be a sequence of Banach spaces which converges in the sense of Kato
" to a Banach space (Y,] - [|) (see [18, Ch.IX, §3]), i.e., for each N there exists a bounded
linear operator P¥: ¥ — Y* such that

(K1) ||PN|| < ¢; for all N with ¢; independent of N,
(K2) lmpy—ol|PMylIn = |yl forally e Y,
(K 3) there exists a constant ¢, > 0 such that for all N and all y € Y’V there exists an
z € Y with
y=PYz and [zl < el
Under these conditions the following result is valid:

THEOREM 3.1. Let A and AV be the infinitesimal generators of strongly continuous semi-
groups S(t) on Y and S™(t) on YN, respectively. Suppose that

(1)  for some constants w € Rand M > 1

]]S'\.(t)u_\- < Me*! forallt>0andall N

and
(ii) for some A € p(A)NNxz, o(AY) and allz € Y

Jim (AT - AN)TIPN e - PN - A) 'z = 0.

Then for allxr € Y’ ] ) .
Jim ISV () PNz -~ PN S(t)z||x =0
Ny —2C

uniformly for t in bounded intervals.

PROOF: The proof of this theorem uses exactly the same arguments as those given in
(18, Ch.IX, Theorem 2.16} and is based on the equality

(A = AN (SN ()PY - PNS(t)) (0T - A)™?

3. '
(3.1 =/S‘\'(t—s)((AI—AN)“PN—P"'(/\I—A)“)S(s)ds.
0

Then for any y € dom A
(3.2) Jim J|(AT — AN yTHSN (PN — P S(t))ylin =0
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uniformly for ¢t in bounded intervals, where we have used assumptions (i) and (ii) together
with Lebesgue’s dominated convergence theorem. Next we consider, for r € Y,

(PNS()-SN()PNYAT - A) 'z

= (P¥O = 471 - (AT = A¥) PN S(1)
(3-3) + (M — AN (PNS(t) - S”(t)PN)z

+ SN(t)((AI — AN)=1pN _ pN(AT - A)")x.

The second and third term on the right-hand side tend to zero uniformly on bounded t¢-
intervals as N — oc, because of assumptions (1), (ii) and (3.2). The same is true also for the
first term on the right-hand side of (3.3). because for any T > 0 the set {S(t)z |0 <t < T}
i1s compact. This shows that

Jim (PNS(t) - S¥N#)PN)y =0

uniformly on bounded t-intervals for any y € dom.A%. A density argument finishes the
proof.

In our situation ¥’ = Z*¥ and PV is the orthogonal projection Z — Z~. We have to
establish hypotheses (K 1)-(K 3) and assumptions (i), (ii) of Theorem 3.1.

3.1. Uniform dissipativity. Following an idea which goes back to [26] we shall use
equivalent norms | - || on Z in order to establish the dissipativity properties which imply
assumption (i) of Theorem 3.1.
For j =1,....(—1 define the indices L‘}N by 6; € [ti\ .t‘k\:\-_l ). I N is sufficiently large
J J

(which we assume from now on) then

1<k <o <k, <N,

The step functions g™ (4) = Zf:) gi‘\')‘['f"f_x) are defined by

N_o14 L
g.’\—'1+]\r7
. r . . Yy
(3.4) gﬁ=g£‘+l+ﬁ fork=1,...,N-1withk¢ (kN |j=1,....0-1),
N

9i =gﬁ;,+%+8f(0,~) fork=kjandk=k;~1,j=1,....(-1.

It is obvious that

¢
g(8):= lim ¢"@)=r+6+ Z X[s,.0) a.e. on [-r0)

N—o
=1
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The inner products (-, )n and (-, ), are defined by

0

(7 0). (o ¥))n =nTp+ / P(6)T¢(8)g" (6) df

-

(0,20, (v )y = 170 + / 2(6)T%(8)g(6) db

-r

for (n,9), (p,¥) € Z. Because of 1 < g(8),g™(8) < ¢+ r, —r < 8 < 0, the corresponding
norms | - ||~ [[- |lg and || - || on Z are equivalent uniformly with respect to .V,

2t < Hlzlin,  zllg S (€ +1)2)|z)| for z € Z.

Therefore hypotheses (K 1) and (K 3) are satisfied for (ZV,|| - ||x) and (Z,|| - ||,). For
z=(n,9)and PV: = (n,0o") we get

PN=N% = =151 = (g™ 2™ 122 = llg' ellis|

S Me™e™ = g 2ella (g™ ) M e + llg* 2 1l 12)

< (C+m 21y = ellz + 6™ = 920l ) (g™ 128 e + 1922 l10 )
This estimate shows that limx o [|P™z||n = ||2]|, for all z € Z, i.e., assumption (K 2) is

also satisfied.

LEMMA 3.2. Let S™(t), t > 0, be the semigroup onZ” generated by A™.
a) Forallz € ZV, z = (n,¢).

~ 1
A 2 2
(A¥2 20 S oxhl? = 2l
for N sufficiently large. where wn =« + /N with

¢

1 1 1

w = SAmax(Ao + A7) + S(C+1) 45 3 14,7 + 4]
j=1

b) For N sufficiently large

ISM)l[n < e~ and [|SN(t)|In S €', t>0.
PROOF: Part b) is an immediate consequence of part a), because (AN z,z)n < w2}
for all = € ZA'. In order to prove a) let z = Exa®™ € ZV¥ and LV: = (2™(0), +N) with
2N = BMbN. Then
(3.5) a = QNN
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For elements z; = ENc™ and 20 = EVNdN a simple computation yields

(3.6) (z1.22)n = (cV)TRN gV,

where RV = diag (1, &g1',.. ., %g,’t’) @ In. Using (3.5), (3.4) and (2.4) we get
(ANz, 2)n = (BT (HNTRN QNN

Simple computations using (3.4) and the matrices HV, Q¥ as given in Lemma 2.2 show
that

—

N-
1 N
(ANz,2)n = 39 160 | + 5 (gm — g0 )16 1* — 91\ NN 12
2 =

+ (8 TDY Y + (B))T ZDE by

k=1
1 r N 1
- _: N2 T N2 _ N2
(3.7) = ple il - 55 2 I - 5l
1 2 N 2 N\T 4 N
- = o (B)[0x 12 + Bl (6)1bf% , * ) + (b5)T 4ob]
< = J
' N ¢ 0 N
()T (Z 4,86, )bA Lo | -4<9>(Z Bt'w)bﬁ') a6
k=1 Yy=1 -r k=0

Observing B} (8;) = 0 for k # l.j\ and k # L;\ - 1 we get
(6T Z<Z A;Bl(6; ))b""

<% IZHHB 6,06 + Bl _y (8,063 | + 18114 163

—

Z  (8;)bgx + By _(6;)bs ,|+—lm

IO!»—A

§bA‘ Z|4J|2

Using Aa? + (1 - A)82 = (Aa + (1 — A)ﬂ) >0for0<A<1anda,f >0 weget

(BT Z(ij ABL6) )0

k=1 Ny=

4
1 1
: < SI6 1P 1A+ SN
(38) < IOI;I 17+ 310K
1[-1
+5 3 (BEG)BN P+ B0, 7).
=1
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Equation (3.5) implies

N
2 _ T 2 _ N2 ¢ 2 N2
(39) ||wnu-ﬁki=: jaf'? = 4N§jl|b,, L+ 6 _QNZ(Ibk 1F+ 16 2).

From V() = %((tf_1 -0y + (0 —th_ )l ), th <6< tl |, we obtain

\_/

N N
||<,9N||33=—%,'Z:( P+ GO + ) < 5 S (B 4+ BET).

This implies

(bN)T / OA(G)(i BY (e)b{") d9|
-r k=0

, N 1 .
(3.10) < 16114l e o™ lize < AT 108 + Sl 17a
AY
r T ' v
< AIZ:168 1 + o g(lbi.l [+ 11

The estimates (3.8) and (3.10) together with (3.7) imply

N N
. v T r - . Y
(A% 2,2}y Swlbe' 1P = o Z B+ o Z(w{.‘_l 2+ 168 )

=1 =1

< wlbd)? - Z(lb L+ 1)

N
- Z bR, 12 + 167 17)
N -
S"‘)NlbﬂY 8]\T E(Ib |2+'bivlz)'

=1

Observing (3.9) and b)Y = n we get the desired result.
Remarks. 1. It is not difficult to verify that

1
(3.11) (Az,2), Sw|p(0))? - lecplli: for all z = (¢(0),) € dom A.
2. In the estimate (3.10) the right-hand side can be replaced by (1/2){4/|2.{681® +
(r/4N) Z‘ (1Y% + |bY |?) which would give the dissipativity estimate
e
. r 1

(AVz,z)n < (A + 5( max(Ao + A7) + € +1 + Z |A;1? + ||A||2L,)) Inf2.

=1
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This would also be sufficient for b). On the other hand, it was shown in [11] that the
estimate as given in a) can be used to give a proof for uniform exponential stability of the
approximation scheme different from that in the present paper (which is based on uniform
differentiability of the approximating semigroups).

3.2. Consistency of the scheme in Z. As we shall see it is considerably simpler to
verify assumption (ii) of Theorem 3.1 for AN and A if 0 € p(A). In this case obviously
also 0 € p(A") for all N because AN(0) = A(0). In this case we also get assumption (ii)
for (AN)* and A* without additional efforts.

LEMMA 3.3. Suppose 0 € p(A). Then
Nim_ NAN)I PNz - PN A7 2|y =0
and
Jim [[((A)) 7PNz - PR (ATl =0
forall z € Z.

PROOF: The adjoint of PV is the injection i™: Z¥ — Z. Then observing AN (0) = A(0)
and e)Y(6) = 1 we get from Proposition 2.3,b) that (AY )1z = PN A1z for - € Z7V, ie..
(AY)"1 = PY AN and ((AN)‘)-] = PY(A*)"1N. Therefore for any = € Z

I(A¥)PYz = PY A7y = [PV A7 Pz - ).

The result follows from (K 1) and PNz — . The proof for the adjoint operators is
completely analogous. I

The basic convergence result for our scheme in the state space Z is contained in

THEOREM 3.4. Let SN(t). t > 0, be the semigroup on Z¥ generated by A ie.. SN(t) =
C’A‘\t, t>0. Thenforallz€ Z

lim SY(#)PN: = S(t): and lim SN(#)*PN: = S(t)*:

N—o N—oc

uniformly for t in bounded intervals.
PROOF: Let us define the operators 7: Z — Z and T": ZN — ZV by

(3.12) T(n,¢)=(n0) for (n,0)€ Zand TN = PNT| .

Replacing the operators A and AN by A — kT and AN ~ kTN, respectively, just means
that the matrix 4 in (1.1) is replaced by 4o — xI,. Therefore we can choose x € R
such that the constants w and w™ corresponding to A — 7 and A" — kT (where w
and w" are defined in Lemma 3.2), respectively, are negative. Let T(t) and T (t) be the
semigroups generated by A— k7T and AN —xTV. By Lemmas 3.2 and 3.3 the assumptions
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of Theorem 3.1 are satisfied for T(t) and T™(¢) with A\ = 0 in assumption (ii). Hence for
allze Z ' '
Jim TN )Pz — PNT(t):z||n =0

uniformly on bounded t-intervals. Since the norms ||-||x and |} - || are uniformly equivalent
and {|PNT(t)z = T(t)z|| = 0 as N — oo uniformly on bounded t-intervals, we obtain

. (3.13) Jim TN PNz = T(t)z

uniformly on bounded intervals.
Returning to the semigroups S(t) and SN (¢) we first observe that by the variation of
constants formula

t
S(t)=T(t) + n/ T(t — s)T S(s)ds
(3.14) 0

t
SN(t)=TN@) + K/ TN(t — )TN SN (s) ds,
0
for t > 0. Since 7T is a finite rank operator, (3.13) implies
(315) “T P T T )T”C(Z Z) — 0 as 7\ — OC
uniformly on bounded t-intervals. From (3.14) we get
1S(t)z = SN ()P || < iT(1): = TV ()P 2|

t
-+~/nTu—sﬂ<-T”u—sﬂﬂvﬂuzmn9WnP”wds
0

t
+~/nﬂr—@TMMZMﬂa:-s ()PNz] de.
0

By Gronwall's lemma using Lemma 3.2. (3.13) and (3.15) we obtain
dim SNOPN: = S(1)z

uniformly on bounded ¢-intervals for all z € Z.
The proof for the adjoint semigroups is completely analogous. §

COROLLARY 3.5. Forz € Z andu € L% (0,00;R™) let 2V (t) be the solution of (2.3) with
zN(0) = PNz and :(t) be the solution of (1.3) with 2(0) = 2. Then for anv T > 0

Jim27(t) = 2(1)

uniformly for t € {0.T] und uniformly for ulj, 1 in bounded subsets of LY(0.T:R™).

PROOF: On the basis of Theorem 3.4 the proof is quite analogous to the proof given in (2]
for a similar result. §
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Remark. In Appendix B we shall prove that (\] — AN)"1PY: — PY(AI - A)7!:
as N — oc for all z € Z and any A € p(A) (Lemma B.1). In view of this result the
introduction of the operators 7 and 7/ in the proof of Theorem 3.4 is in principle not
necessary as far as convergence of the semigroups S™(t) in Z is of concern. But we already
have seen in this section that the approach taken in this section gives also convergence for
the adjoint semigroups S (t)* without additional efforts. On the other hand the proof of

(M - (AN)‘)-IPNz — PN(AI — A*)~1; for A # 0 would be very involved.

3.3. Convergence of the scheme in H!. We shall prove convergence of the scheme in
H? using results already obtained for the scheme in Z. For the nonhomogeneous problem
we shall also need

LEMMA 3.6. Let w™(t), t > 0, be the solution of (2.2). Then there exists a constant & > 0
(in fact & = (3/2)||L||¢(Hr rn) + 1) such that for all N

t
lew™ ()5 < 2 lew™ ()13 +3 ] 2= B|?|u(s)[*ds, t>0.
0

Proor: Let tw™(t) = BNV (). Then

lewe™ @Ol = 165 (O + = D 1o (1) = b (1),
k=1
Since bV (t) solves equation (2.5), we get
1d LN (12, = DN (TN N o N BN T (BN N
:7'5“ tu (f)nnl = by ()" by (1) + TZ( k—l<t) - U (t)) ( k—1(t) = by (1))
k=1

N 1 N . T,: v -

= (YD) + Bul z)) )+ 5 20 () = B () T (B () + Y (1)

k=90 k=1

= (L™ () + Bu() W (1) + 3B OF - P
< SN P + SIBEOR + B OF + 1w (@) + |BEu)?

< ClLlci moy + 1)l (O + B

Thus Gronwall’s inequality yields the result. §

THEOREM 3.7. For = = (¢(0),) with o € H' and u € L (0.0c;R™) let z(t) be given
by (1.4) and w™ (t) be the solution of (2.2) with initial value w™(0) = (P; . Then

Jim_ few™ () = () gy = 0
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uniformly on bounded t-intervals.

PROOF: Since H? and dom.A supplied with the graph norm are metrically isomorphic,
it sufficies to prove | Aw™(t) — Az(t)]lz — 0 and («w?™ (t))(O — (e2(1))(0)as N -
uniformly on bounded t-intervals. By definition of AN and L™ we have

(3.16) ANPN N (1) = ALNPN N (1) = Aw™ (1), t2>0.

We first consider the case u = 0. Using (3.16) we obtain from (2.2) (d/dt)Au™(t) =
AN(d/dt)PNuwN (t) = AN AwN (1), i.e.,

(3.17) AuM(t) = SN (1) Aw™N(0), t>0.
Lemma 2.1 implies
(3.18) PN A:(0) - A (0) = (L(¢ — 7). 0).

where o = E?;o Bl o(t). For some K > 0 independent of N we have (cf. (23, Exercise
(2.10))

(3.19) o™ = ellze < K(r/N)Y2{gl g
for N =1,2,... . This together with (3.17) and (3.18) implies
I Aw® (1) — Az(t)] 2
< IS™ (Ol [1Aw™ (0) — PN A(0)]| 2 + (1SN (1)PN A2(0) — S(t)Az(0)] 2
< -’\ft'i“"llLllc(Hl RN (-—)1/2||<P||Hl
+ 1SN ()P Az(0) — S(t)Az(0)||z for t > 0.
By Theorem 3.4 this gives

Jim [ Aw™ () = Az(t)]z = 0

uniformly for t in bounded intervals. Since zN(t) = PNw™N(t), t > 0, satisfies (2.3), by
Theorem 3.4 we also get limp .o [|[PNw™(¢) — 2(t)||z = 0 uniformly for ¢ in bounded
intervals. This implies

[(ew™(£))(0) = (e2(t))(0)] =0 as N — oo

uniformly on bounded t-intervals. Note that («w™(¢))(0) and (¢2(2))(0) are the vector
components of P¥w™(t) and z(t), respectively.

We next consider the case z = 0 and u € C'(0,T;R™), T > 0. Equation (2.2) together
with (3.16) implies

{
P‘\'urN(t)=/SN(t—s)Bu(s)ds, t>0.
0
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Hence we have
Au™(t) = ANPN N (1) = AV /0'5"'@ ~ s)Bu(s)ds
= SN (1)Bu(0) - Bu(t) + /OISN(t - s)Bu(s)ds.
Similarly we get

A:z(t) = S(t)Bu(0) — Bu(t) + '/:S(t - s)Bu(s)ds.
Therefore
Az(t) = Au™(t) = (S(t) = S™(¢))Bu(0) + /Ot(su ~s)— SN(t — 5))Bu(s) ds.
By Corollary 3.5 this implies
Jim_[[4(t) = Aw™(t)]z = 0
uniformly for ¢ in bounded intervals. As in the previous case (but now using Corollary 3.5)
we also get limx —oc (¢w™(¢))(0) = (¢2(¢))(0) uniformly on bounded t-intervals.
In case z =0 and v € L?(0,T;R™) we have the estimate (see Lemma 3.6)
leae™ (Ol € VBBl |lullLao,mm)s 0t T

We have an analogous estimate for (z(t). Density of C}(0.T:R™) in L*(0.T:R™) and a
simple application of the triangle inequality implies the result for the general case. §




4. UNIFORM DIFFERENTIABLITY

In this section we first establish differentiability of the semigroups S~ (t) uniformly with
respect to N. Uniform differentiability of the approximating semigroups S ~(t) is funda-
mental for our approach to obtain rates of convergence for our scheme (see Section €).
Also the proof for the uniform exponential stability property of the approximating semi-
groups (see Section 5) is based on uniform differentiability of the approximating semigroups
though a different proof would also be possible (see the remarks at the end of Section 3.1).
For a fixed real number b > r and numbers a > 0, w > 0 we define

Tow ={A€C||Im)| > el*"ReM and Red <w}
and the “exponential sector”
Se.={ €C|Red<wand )\ ¢ Ea‘,}.

THEOREM 4.1. a) Let w > 4 (4 given in Lemma 2.4), b > r, 0 < & < 1 and put a; =
w+ %ln —2=. Then for all @ > max(ag,a;) (ag as defined in Lemma A5)

o(AN)C S, forall N
and there exists a positive constant ¢y such that
AT = AY)7H| < ¢ |Im )|

forall A€ ¥, and all N.

b) For any compact subset K of p(A) there exist positive constants ¢z and N7 such that
K C p(A"N) for N > N, and

N —AY) Y| <, for A€ K and N > N\,
PROOF: By definition of a; and Iy we have

-6 w

>
and |ImA| > T

(4.1) Kpe 9 < for A e &, ..

We first prove that A € p(,fl"\') for all A € £, and all N'. According to Theorem 2.3.a)
this is equivalent to det AN(A) # 0 for A € £, .. Let a > max(ag,a,). Then Lemma A.5
and (4.1) imply

N < vk s —ab
|L(ey In)l < ‘7021?!\' u(Ar/N)|* < wRoe™?°|Im Al
<(1=6){Al forrAeX,, N=12,....

Therefore |AN())] > 6|A| for A € S,..., N = 1.2,..., and (taking the Neuman series for
AN

: 1
(4.2) AN < A for A\€SaL. N=1.2.....
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This proves a). Note that by Lemma 2.4 any A with ReX > 4 is in p(A") for all .
According to Theorem 2.3,b)

(AT — AN) 1z = PN((0),7) forall z € ZV,

where ¢ is given in Theorem 2.3 and z = (n,9) = ENa®.

(# = u(rA/N))

Using Lemma A.5 we get

k
1r A
N N\ = |- — k~j N
I (2 ‘2.7\’(1+“);” “:l X
1r k-1
N
< 5K‘(|al |+§ laj¥ |+ layy[) + la |) JBax, ML
k
(4.3) r N\ e —ab
= }(Zla, |)1\oc Im )|
: -é
X 1/2( ZI ”I"’) IIm A|
1-46
< "’”TH;HL:IImf\I
and
(4.4) |L(T,\')] S %T1/2(1 _ 6)“\'9“L2|In]/\‘

for all A € T, . and all N. The estimates (4.1). (4.2) and (4.4) imply

1 21=¢
O = g (14972 === 1l )

1 (L -
(4.5) < 6IA1( ||;||L,) (1~ &)Im Al

1-6/1

<= (= +7)le)
foral A€ T,..2€ Z¥ and N =1,2,... . Using (4.1) again we also have
’, (1-6)2/1 172\
(4.6) (0] € == (= +r'/2) 2]l l1m A
foral A e, ..z€ZNand N =1.2..... From (4.3)-(4.5) and Lemima A.5 we obtain
1-46/1-6,1 .

(4.7) ()] < ‘7_<T( +r /) e )z Im AL k=1L
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forallAe S, .z€ZV%and N =1.2,... . Let ¢ = %é(l—;é(i +r1/2) 4 r‘/2). Then
(compare also (3.9)) by (4.6) and (4.7)

N
IP¥ (e < O + 55 3o (o) + o))
k=1

< &(1+r)lfz]2(Im AP

forall A€ T, z€2ZNand N=1,2,... .

In order to prove b) we use Corollary A.4 to see that K’ C p(A™) for N sufficiently large,
say N > N, (compare Proposition 2.3,a)). We also see that AY(A)™! — A(A)~! uniformly
on K, which implies |[AN(X)~!| <const. for A € K and N > N,. Furthermore Corollary
A.3 shows that sup_, <o lex ()] = maxo<j<n |u(rA/N)| < const. for A € I'and all N.
Therefore (4.3) reduces to |7N(tR)] < const.||¢||Lz for A € Kand all N. The rest of the
proof uses the correspondingly simplified versions of (4.4)~(4.7) in order to get

1PN (w(0).w)|® < const.||z}|> for Ae K and N > N}. §
It is easy to see that for arbitrery a.w € R and b > r we have
(4.8) €2l < Koe " |ImA], -r<6<0, AeZ,..

If we choose «w > 4, @ > max{ay.a;). then analogous computations as in the proof of
Theorem 4.1 show that

NI — A)7H < allmA] forall Ae S, ..
Let ' =T, UTIy, UT;. where
I''={AeC|ReA<wandImA = ¢l ReMt}
I;={)€C|Red=wand|Im\| < o™},
I;={ eC|Xel,}.
The following theorem is an immediate consequence from [20; Thm. 4.7).

THEOREM 4.2, a) For all N and allb>r

(4.9) SMt) = ,)—1; / eMA = AN dA, t > 20
=% Jr

and

(4.10) ANS™M () = _——1_—1,//\6’“(/\1— AMYTLAA > 3,
= r

b) For all b > r

(4.11) S(t) = ;)l—,/c"‘(AI—A)"dA, t > 2b,
LTl T

and

(4.12) AS(#) = -{é}_//\c"'(AI—A)"d/\. ¢ > 3b.
==tJr

Remark. The contents of Theorems 4.1 and 4.2 explain why we labeled our scheme
“uniformly differentiable”.
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5. UNIFORM EXPONENTIAL STABILITY

In order to establish the property of uniform exponential stability for our scheme we
shall use convergence of the resolvent operators (Al — AY)~!. Our approach is the same
as in [19].

THEOREM 5.1. Let wo = sup{ReX | X € a(.A)}. Then for any € > 0 there exists a
constant M = M(e) such that

1SN ()|l < M(e)el et >0,
for N sufficiently large.

PROOF: By assumption we have A € p(A) for ReA > wy. Corollary A.4 together with
Proposition 2.3,a) implies that for N sufficiently large A € p(AN) for Re X > wy + e
Therefore we can choose w = wg + € in the definition of the path T for the representation
(4.9). This is a consequence of Cauchy’s theorem, because (AJ — A)~! and (M — AVN)™!
for N sufficiently large are analytic in ReA > wg + €. Furthermore we choose b = 5r/4.
From (4.9) we get the estimate

1SNl < /r RAAT - AY) 7
1Ul s

|

bt [ AL~ AN JaN =2 Dy 4 Ty fort > 20
rs

1
t a3

Using Theorem 4.1,a) the estimate for J; is

J,<c—‘/ eReMIm A|[dA. ¢ > 2.
e r

A parameter representation for I'; is
(5.1) Mr)=T1+ie® ™ _oac <7< wg+e.

1A 2 2a—ryp\1/2 _ - : 1/2
with |[A(7)] = (1 + be2a=Tb) / < e (elwot b 4 p2e2aby /2 Therefore
“"0‘+(
_ const. . .
Jy < (‘onst./ T2 gr < }—obc(“’”‘)' < et for t > 3r.
—x b

where c is appropriately chosen (note that 2b = 5r/2 < 3r).
The path I'; is a compact subset of p(.A). By Theorem 4.1.b) we have for A € 'y and
N sufficiently large
Jo < const.e!0tI for t > 3.

which together with the estimate for J; shows that
(5.2) 1SN (1) < const.e!o+)t for t > 3r,

By Lemma 3.2 (||S*(t)||) y_, , is uniformly bounded on [0,3r]. This together with
(5.2) proves the result. §

Remark. If wy < 0 then Theorem 5.3 states that the approximating semigroups SN(t)
are exponentially stable for N sufficiently large with a uniform decay rate. which can be
chosen arbitrarily close (from above) to the decay rate of the semigroup S(t).
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6. CONVERGENCE RATES

In this section we establish rates of convergence for our scheme. The basic idea for the
approach, namely to use uniform differentiability of the approximating semigroups, was
introduced by I. Lasiecka and A. Manitius in [19] for the scheme of averaging approxima-
tions. We shall prove two kinds of rate estimates: a) Optimal rates on t > 0 for sufficiently
smooth initial data. b) Optimal rates on t > t; > 0 for general non-smooth data.

For fixed w > v (7 as defined in Lemma 2.4) and € > 0 we choose b € (r,7+¢/7)and a =
max(ag, a;) (ao defined in Lemma A.4 and a, in Theorem 4.1,a)) in the definition of £, ...
Let wo = sup{Re A | A € 0(A)}. For any w; € (wo,w| the path Ty, =Ty, UT2,, UT3..,
is defined by

Fo,={A€C|RedA<wandIm) = e(a—ReA)b}’
Fow, = {)\ € C|Re) =w; and [Im )| < e(a—ul)b}’
3., ={ eC|Ael.}

The following assumption will be used in some of the estimates:

(H) The delays §,. j = 1.....(, are commensurate (i.e., for # > 0 and natural numbers
k; we have §; = k;7. j = 1....,() and are contained in the set of meshpoints ty,
k=1,...,N (which is the case for N = mk,, m=1,2,...).

The first result on convergence rates is concerned with norm convergence of the approx-
imating semigroups (with rates O(1/N') resp. O(1/N'/?)) for t sufficiently large and with
convergence uniformly on bounded intervals if initial data are in dom .A°%.

THEOREM 6.1. Let a =1 if (H) is satisfied, otherwise a = 1/2.
a) For any ¢ > 0 there exist positive constants ¢y, ¢ and Ny such that for N > N\

(61) HS‘VH)PN — PNS(f)HC(Z‘Z) < (—:7)06(“)°+‘)t, t 2 Sr 4 €.
and

. e . T o (wote
(6.2) ILN SN (PN = (1)) £(z.00m 4) < Cz(ﬁ) ot t > 6r+e

b) For any T > 0 there exist positive constants c3 and N, such that for N > N\,
) . . r
(6.3) ISY (PN z = PRS():] < es(5) Nzllaomaz, 0St<T,

for all z € dom A? (||z]ldom 42 = ||z}l + || A%z|| for z € dom A?).

PROQF: For ¢ > 0 and sufficiently small let w; = wo + ¢. By Theorem 4.1,a) we have
o(AN) C S, for all N. From Theorem 5.1 we infer that Re A < w; for all A € a(AN)
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and N sufficiently large, say N > N;. By Cauchy’s theorem we can replace I" in Theorem
42 by Ty, for N > N;. Using (4.9) and (4.11) we obtain

IPYS(t) - S¥(t)PN| < ”/ et PN(AI A — (M - A")—‘P“)dxn
lWxUF"“l
+ —]|/ PN(AI A7t — (M - AN)-IPN) d)||
=: 5;(.]1 + Jg)

Using the parameter representation (5.1) for I'; ,, and Lemma B.1,a) we get (note that
5b < 57 + ¢€)

I SQC(%)O/ e'ReMIm A|*|d)|
r

1w

r .o wo+€ ra
< const.(ﬁ) / eT(t=30gr < const.(?) glwot ot
- —0G 4

for t > 5r + e and N > N;. Using Lemma B.1,b) we obtain analogously

T
Jg S_ ConSt.('ﬁ)aﬁ(‘do‘H)t

4

for t > 5r + € and N > N;. Combining the estimates for J; and J, we get (Q.l).
For the proof of (6.2) we first note that SN¥(t)PNz — S(t): = ((LNSN(t)PNz -
S(t)z)(0),...) for z € dom A. Therefore (6.1) implies

(6.4) (LYY ()P = — S(1)2)(0)] < cl(%)"e“”ﬁ‘“

for t > 5r + ¢ and N > N,. It remains to estimate
IALYSN()PN = AS(t)lciz2,2
(6.5) < AYSN ) PN — PN AS(t)ll2(2.2)
+ | PN AS(t) — AS(t)¢(z2.2)-
From (4.10) and (4.12) we immediately get

ANSN()PN — PN AS(t)

=5 [ (A1 =A%) PN - PRI - )71 ) an
27 Jr,,

for t > 3b and N > N,. Estimates analogous to those leading to (6.1) (using Leinma B.1)
give

(6.6) AN SN (PN — PN AS(1) t)ll¢(z.z) < const. @ glwotat
(2.2) \
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for t > 6r + ¢ and N > N,. Note that in the estimates we pick up an additional fac-
tor |A] which is bounded by “const.|ImA[" on £, .. We still have to estimate [[(PV —
IAS(t)||c(z.2z)- Let t > 2b. Since S(t) is differentiable for t > r, we have AS(2b): € dom A
and therefore

N\PNAS(t)z — AS(t)z]| = ||PNS(t — 2b).AS(2b)z — S(t — 2b).AS(2b)z|

N
6.7 < const.%llLS(t ~ 2b)AS(2b)z|| .

Here we have used that
4 T
1PY(2(0), 9) = (2(0), @)l < comst.llpllm  for ¢ € H',

(compare [19;Proposition A.3]). By differentiability of S(t) we get from [20; Lemma 4.2]
that AS(2b) and A%5(2b) are bounded operators. Thus

ll:S(t ~ 2b)AS(2b)z] L2 < et AS(2b)]| |2

and

|t AS(t — 2b)AS(2b)z||12 = ||tS(t — 2b).A2S(2b)z|| 2 < et IU=28)) A25(2b)| I=]|
ie.. ||eS(t — 2b)AS(2b)z| < const.e!=oF =l which together with (6.7) gives
(6.8) (1PN AS(t)z — AS(t)z|| < const.}%e(“’”‘)’”zu
for all t > 2b and N > N;. The estimate (6.2) now follows from (6.4)~(6.6) and (6.8).

In order to prove part b) of the theorem we choose A € p(A). Then Lemma B.1,b).

Lemma 3.2.b) and (3.1) imply

1A = A%) 7 (S¥(OPN = PNS(#) 3] < const.(52)* 1zllaom 4

for allt € [0.7]. : € dom A and N sufficiently large. This together with (3.3). Lemma
B.1,b) and Lemma 3.2,b} implies

(PN S(t) = SN ()PN )AL - A) ]|
T\ a r.\ao r.\o
< c(jv-) 1Stz + const.(-ﬁ;) [Izlldom 4 + const.(N) =0l
for 0 <t < T, N sufficiently large and z € dom .A. The last inequality shows

1PN S(t)z = SN (PN 2] < const.(57) " l12llaom 42

for 0 <t < T, N sufficiently large and z € dom .A%. §

The rest of this section is devoted to optimal convergence rates, i.e., rate estimates of
the form O(1/X?) and O(1/N3/?), respectively.
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THEOREM 6.2. Let 3 = 2 if (H) is satisfied, otherwise 3 = 3/2.
a) For any € > 0 there exist positive constants ¢, ¢, and N such that for N > N}

(6.9) 1SN ()PNz = PV S(t)z]| < e ( N)" Wot Mol yom 4. €2 67 +¢.

and

(620)  WINSY®)PNz— PMiSW)zlin < a(5) et Mzlaoma, t2Tr+e,
if z € dom A.

b) For any € > 0 there exist positive constants c3, ¢4 and N, such that for N > N\,
611)  [ISM(PY: =~ PYS(0):]] < () et (lnl + lplwn=). 12 6r e

and

, ; ; y T \2 -
(6.12) LL¥S¥(6)PNz = PYS®llm < ca(55) e Inl + gllwne), 827+

for all z = (n.p) with o € WH>(—r,0:R").
c) For any T > 0 there exsist positive constants c¢s andN; such that
r

(6.13) ISY@6PYz = PNS(0)z]l < es(5) Iellaomas. 0<t<T.

for all : € dom A® and N > N;. For : € dom.A* we can replace the right-hand side of
this estimate by ¢s (% ) Izl gom .44

PROOF: As in the proof of Theorem 6.1 we get for N sufficiently large. N > N5,

IPYS(1): - SYOPN:) < o | (P = A7z = (M = APV d|
’ r)‘w]Ur3'W1
_1_ At{ pN -1, Ny-1pN_
+‘-’r|!/r,,w,€ (PYOI = 4712 = (AT = AY)7'PY:) d)|
1
= —7':(J1+J2)

Using the parameter representation (5.1) for I'; ., and Lemma B.2,a) we get (observe also
6b < 6r +¢)

r .8 .
Ji SQC(F) ||z||d0mA/ eReAIm A[*|d)|

]
wote€

r _ r.3
< const. (\ ) Iz “domA/ eT1=6bgr < const.(V) et Y = llyom 4

-
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for t > 6r + ¢ and N > N,. Using Lemma B.2,b) we obtain analogously
Iy < const.(%)ﬁe(“""‘"‘)'“z“dom 4

fort >6r+eand N > N,. If o € W1°(—r,0;R") then in the estimates for J, and J;
we can take 8 = 2 and |n| + ||¢|lw1.« instead of ||z|ldom .4. This finishes the proof for (6.9)
" and (6.11).

Since ((LNSN(t)PNz - PN (S(t)z)(0) equals the vector component of SN(t)PNz -
PN S(t)z, we get from (6.9) the estimate

|(:L¥S¥(0)PNz = PYiS@)2)(0)] < e (F) et l2llsom 4

(resp. £ ¢; (-,:—,)26(“°+‘)‘(|7)| + |l ) for t > 6r+eand N > N;. It remains to estimate
NLALNSN () PNz — L APNS(1)z|| 12 < |ANSN(1)PN 2 — APN S(1)2).

where we have put PN = (71PVy, i.e., P[ is the orthogonal projection dom A — Z}V.
Since AN and AP;}" are bounded operators, we get from (4.9) and (4.11)

ANSN(#) PNz — AP S(t):

(6.14) _ L[ o (AN(,\[ — ANYTIPN, — APN (AT - A)“’z) dA

27¢'i I‘wl

for t > 2b. Easy computations using also (AV)"1PY = PYA~!PY and ATTPYAPY =
P vield

AN = AN)TIPY s — AP (M - A)7:
(6.15) = ANAT - AN) TV ARN — PYA)Y (M - A)7
+ AANA = AN PN (1 - PN YT - A)7 !z

From AN(AI = AN)~' = A(AI — AN)™! — I and Theorem 4.1,2) we get

(6.16) AN (AT = AN)"'PN|| < const.|]ImA? for A € £,,, and N > Mo

With the notation used in the proof of Lemma B.2 we have

(617)  (I= PN = A7z = ((0) - " (0), ¥ = ¥7) = (0,4 = 7).

An easy computation (see Lemma 2.1 for the definition of P" and P}") shows
(AP} — PN A)(¢(0).v) = (L(v™ = +),0).
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This and (6.15)-(6.17) imply
AN (AT — ANYT1 PNz — APN(AT - A)7'2||
< const.|A| [Im AP (L(yN — )¢ — V)
< const.[Im AP (JL(¥™ — )| + ||v — "A llz2)

for A € £, and N > N,. The estimates used in the proof of Lemma B.2 show that

NANOT — AN PNz — APN (M - A)7Y2|

6.18
(6.18) < const. IIm)\]s( ) |zlldoma for A € £, and N > N,.

If ¢ € Wh*(—r,0;R") then 8 = 2 and ||z||4om 4 can be replaced by || + |[¢]li1.=. An
analogous proof shows that

NANAL — AN ) PN 2 — APN (M — A)7Y2|

6.19
( ) < const.(-j\;) l|z]ldom.a for A €T, ., and N > N,.

Estimates (6.18) and (6.19) together with (6.15) vield
| AN SV (PN 2 — APF S(1)2]] < const. (5) €™ V|2 aom 4

for t > 7r + ¢ and N > N, with the obvious modification in case » € W1 >(—r 0: R").
For the proof of part ¢) we choose A € p(A). Then Lemma B.2,b), Lemma 3.2.b) and
(3.1) imply N

AT =A%) (V) PNz = PYS(0): )| < comst.(52) 7l laom 4

for 0 <t < T,z € dom.A? and N sufficiently large. This estimate together with (3.3) and
again Lemma B.2.b), Lemma 3.2,b) implies (6.13). The result for = € dom A* is clear if
we observe that || + ||¢]lu1.« < const.||z|lgom a2- B

Remarks. 1. The result of Theorem 6.2,c) shows that the vector component of S (t)P~ z
converges to the vector component of S(¢)z (which is the solution z(t) of (1.1)) with
rate 1/N? uniformly on bounded t-intervals for sufficiently smooth initial data (e.g., z €
dom A%). Note that the vector components of S(t)z and PN S(t)z coincide.

2. The condition z € dom A for the estimates (6.9) and (6.10) can be replaced by the
condition z = (n,¢), ¢ € W12(—r,0; R"), as can be seen from (B.14).

3. Since S(t) is compact for t > r, the estimate (6.1) also implies

IS¥(t)PY = S(t)le(zzy =0 as N — oo

for t > 57 +e.
4. One should observe that the estimates ('6.10) apd (6.12) are estimates for the H!-norm,
i.e.. involve the derivative of (LY SN(t)PV: — P,A' tS(t)=.
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7. THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM

We consider the following control problem:
For given initial data z = (n,¢) € Z minimize the cost functional

(1) I(u,z) = /0 (WP + [u()?) dt

over u € L?(0,00; R™) subject to (1.1) or, equivalently, to (3.1).

DEFINITION 7.1. a) The pair (A, B) is stabilizable if there exists an operator K € L(Z,R™)
such that A — BK generates an exponentially stable semigroup on Z.

b) The pair (C, A) is detectable if there exists an operator G € L(RP, Z) such that A—GC
generates an exponentially stable semigroup on Z.

The following theorem is well-known (see [24]).

THEOREM 7.2. Let (A,.B) be stabilizable and (C, A) be detectable. Then the algebraic

Riccati equation
(7.2) (AT +TA-TIBB*N+C*C)z=0, =z € domdA,

has a unique self-adjoint and non-negative solution I1. Moreover, the operator A — BB*Il
generates an exponentially stable semigroup T(t), t > 0, on Z. The optimal control for
(7.1) is given by

w(t)y = -B*lIT(t)z, t>0.

Remark. Without loss of generality we can assume in Definition 7.1 that K*R™ C dom A*
and GR” C dom A. In fact, the solution II of (7.2) satisfies I1Z C dom A* (see [7]). so that
IBR™ C dom A*. Similarly the dual Riccati equation

(AT +TA* - SC*'CT+BB*): =0, z€domA*,
has a unique, self-adjoint and non-negative solution T such that £Z C dom A and A-ZC*C
generates an exponentially stable semigroup on Z (cf. [22]). Thus EC*R” C dom A.

Let BY = P¥B and CN = C|z~. The following result is concerned with stabilizability
of (AN,B") and detectability of (C™, AN), both uniformly with respect to N.

THEOREM 7.3. a) Suppose that (A,B). Then there exist constants M; > 1, w; > 0 and
a sequence KN € £(ZN ,R™) such that ||K¥|| is uniformly bounded and

”e(AN—BNIC”)t" < Mpei!, t>0

]

for N sufficiently large.

b) Suppose that (C,.A) is detectable. Then there exist constants M, > 1, w; > 0 and a
sequence GV € L(RP, ZV) such that ||GN| is uniformly bounded and

lle(AN_GNCN)(H < ]\;{26_“2’, > 0,
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for N sufficiently large.

PROOF: a) Let (A,B) be stabilizable. Then there exists an operator X € L(Z,R™)
such that A — BK generates an exponentially stable semigroup. We put KX~ = K|z~,
N =1,2,... . Then, for z € ZV,

(AN = BNKM)z = ANz - BK2 = ALYz = BKPN LN
= (A-BKPM)LN:,

K™t s the approximating semigroup for the delay system

i.e., the semigroup (A" ~B"
i(t) = Ln(z),
which corresponds to A — BKPYN. Let K(n,¢) = Kon + fer(G)p(G)dG for (n,¢) € Z,
where Ky € R™*" and K(-) € L?(-r,0;R™>"). An easy computation shows that
0

KPY(n,¢) = Kon +/ KN (8)p(8)d.

-r

. . , . N
where KN = ZA I\'JA E}‘ with I\'}f\ = (N/r) _/;{I,’.“I\'(G)dﬂ. Therefore
J

=1

0
Lx(¢) = L(¢) — BRop(0) - B [ KN(8)p(6)d6.

—-r

The delay system corresponding to A — BK is 7(t) = fl(z,). where
0

L(¢) = L(¢) -~ BEKop(0) - B [ K(8)2(8)d6.

-7

We choose v as in Lemma 2.4 corresponding to L and w > 4, 5> . 0 < é < 1 as in
Section 4. The estimate

ILn(eX In)| < |1 L(eY L) + |En (e} In) = L(eN 1))
0

S -8)AIB| [ |K(6) - KN (8)]]eX (6)d6
< (1-68)|A +|B)r' 3| K = KN L2 oA, lu(Ar /N)IF
< (1= 8)A + [BIr/*[|K — KN|[ L2 Koe™*(Im A|

for A € £, ., shows that for § € (0, §) there exists an Ny such that

ILn(eNT,) < (1= 8)Al for A€ £, aud N > N,
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Using this estimate we can establish Theorems 4.1 and 4.2 for the operators AN — BNKN,
N > N,. But then also Theorem 5.1 is valid for 4 — BK and AN —=BNKN, N > Ny, which
proves the result on stabilizability.

b) Let (C,.A) be detectable. Then there exists an operator G € L(R?,Z) with GR? C
dom A such that A — GC generates an exponentially stable semigroup T(¢). t > 0, on Z.
Since T(t) is not the solution semigroup of a delay system the proof in this case will be
somewhat different compared to that for a).

For N =1,2,... we define

GV = PVPNG e L(RP, ZV).
Since Gy € dom A for all y € RP, there exists a function G € H!(-r,0; R"*?) such that
(7.3) Gy = (G(0)y.Gy) for all y € RP.
Using the definition of G N and Lemma 2.1 we get
(7.4) GNy = (G(0)y,GNy) for all y € R?,
where GV = (1/2) i, EN(G(tN) + G(t_,)). The matrix representation GV of GV is

given by
G]\ = col (G(;\r .. ’Gk') € R"(N+l)><p.

where G{¥ = G(0) and G¥ = (1/2)(G(t3_)+ G(tY)), k =1,...,N. From (7.3) and (7.4)

it is easily seen that
N 2 1 Al - N N 2 r 2
I6¥ -0 < 33 / (166Y) - GO +16(H,) - G(6)) d6 < re(%::G)
where w(e:G) = supje—ri<c |G(8) — G(7)!. Therefore
(7.5) lim |IGN -Gl =0
N—oc

From AGy = (L(Gy), Gy) and
- A N & :
ANGNy = PGy = (L( B ). T 3B (Gl - 6l )
k=1 k=1

it follows immediately that (because Z,’:’___O BNG(tY) = PNG and PNG — G with respect
to the graph norm)

(7.6) Jim | ANGN - AG|| = 0.
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The representation (4.10) together with Theorem 4.1,a) shows that for ¢, = 4r
(7.7) AN SN (t)|| < M for all N,
where the constant M does not depend on N

Let TN(t), t > 0, denote the semigroup generated by AN — GNCY. By the variation of
constants formula we have

(7.8) TN(t) = SV(t) - /tSN(t—s)gNCNTN(s)ds, t>0.
0

By Gronwall’s inequality and (7.5) we obtain
(7.9) ITN(t)z|| < const.||z|l, 0<t<ty, N=1,2,....
This together with (7.6) and (7.7) gives

IANTN (to)z]] < M|zl + const.| ANGN| |21l < M|z,
for all N, where A is not dependent on N. From [20: p.56], we see

. , v ar -1
(7.10) TN(t) = L /e“(u— (AN —g‘\c")) dr, > 2,

277? T
where I = f] U fg U f‘g and

I'1={A|ImA =eleReM Re) < 3].
T2 ={)|lImA < el*=P% Re) = 35).
Iy={\|Xxel}.

with a = (1/tg)In231. 3 = 4 + supy [|[GVCY|| (4 the constant defined in Lemma 2.4).
Moreover (see [20:Thm. 4.4]) we have

(7.11) 1(A1 ~ (4% =%eV)) 7| < const.|1m Al
for X € Ta,p = {X||Im)| > el"~ReNto Re ) < B}, where “const.” does not depend on
y .For z € Z we consider the equation
(7.12) (AI — (AN - chN))zN = PN,
Let Ay € p(A) and put
Fr=T+ NI —-A)" (A=) +GC).
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It is easy to see that X € p(A — GC) if and only if F is continuously invertible. If this is
the case then

(7.13) (u-(A—QC))_l = F ol — A)7
Since Aq € p(A™N) for N sufficiently large, we analogously have
(7.14) (A= (¥ =g¥e™)) T = (F) M (Ao - ANy
for A € p(AN — GNCY) and N sufficiently large, where

FY =1+ (el =A%) (A= 20) +6NCY).

Using I = Fa — (Mol = A)7 (A= X) +GC), X € p(A~GC). we see that equation (7.14)

is equivalent to
(7.15) FalI+E0)N = (Al — AN P
where
&Y = F7 (= 20) (ol = AT PN — (oI - A)7)

(7.16) . .
+ (ol = AN)TIGVEN — (NI - A)"QC).

Since (Ag] — A)~! is compact. we have
WPYAl—A) P = (Al =AY =0 as N = x

and therefore by Lemm~ B.1 also ||(Ag] — AY)"' PN — (AgI — A)~'|| = 0. Using this and
(7.5) we obtain from (7.16) that

IEX—0 as N — oo

uniformly for A in compact subsets of p(A — GC). Therefore for any compact subset ik of
p(A — GC) there exists an Ny such that (Fy(I + 5;\”))_] exists for A € ' and N > Ny,
e, K C p(AN = GNCY) for N > Ny. Equations (7.14) and (7.15) imply

(FO) T =Y ( N forde B N 2 N

k=0

This representation shows that
: Niy=) _ =2y _
J\hlnx [(Fx) Fiill=0
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uniformly on compact subsets of p(A4 — GC) which immediately implies
(7.17) dim (A7 = (AN - GNCN )T PN o (AT - (A=GC)) e =0

uniformly on compact subsets of p(A—GC). The last result implies (by the same arguments
as those given in the proof of Theorem 5.1) that we can replace § in the definition of [ by
any w > wp = sup{Re A | A € (A — GC)} and still have the representation (7.10) for N
sufficiently large. As in the proof of Theorem 5.1 (but using (7.11) and (7.17) instead of
Theorem 4.1) we obtain

TN (t)|| < const.e*!, t > 2tq,

which together with (7.9) (for t € [0, 3to]) finally gives
(7.18) IT™(t)|] < const.e*!, t>0,

for N sufficiently large. §

Corresponding to problem (7.1) we consider the following approximating problems:

Given z € Z minimize

(7.19) J”(u;:)=/ (1CY =N (@)1 + [u(t)]?) dt
0
subject to
1
(7.20) z"'(t)=s-“'(t)PNz+/ SN(t — s)Bu(s)ds. t>0.
0

THEOREM 7.4. Suppose that (A.B) is stabilizable and (C. A) is detectable. Then for N
sufficiently large the algebraic Riccati equation associated witl (7.19).

(7.21) (AY)" L+ AN — BN (BN T+ (€)Y =0.

has a unique self-adjoint, non-negative solution II*. There exist positive constants M,

M, and w such that
I < My and (|47 8T ETIN < a1 >0,

for N sufficiently large.

PROOF: The result on existence and uniqueness of a solution II"™ of (7.21) for A" sufficiently
large follows immediately from Theorem 7.3 and Theorem 7.2 applied for A™. B~ and C".

Let KN € £L(ZY,R™) and G € L(RP,Z") be defined as in the proof of Theorem 7.3.
Then for all z € ZN

(INz,z) = uié’{zJ'\'("”) < IN(=KN:N(, )

— / (|CN6(AA—BAKA)!2‘2 + 'K:A C(AA—BAK‘“H:I?) dt < R”:H?.
0
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where x is not dependent on N. Since IIV is non-negative, this implies
|ITIV|| < & for all N,
From equation (7.21) we immediately get
(A™ = BN BN ™)' nN + oV (4N - 8V (BN ™)
+OVNBYNBN ) TN + (V)N =0
Let zM(t) = exp((AY - BN(BM IV )t)z,t > 0. Then a short calculation gives
d

dt( (O.ONN) + (BN TN N0 + eV =0, t>0,

or

MY 2N), 2V () + /([(B" IV ()| +[chN(s){)
= (I"z,2) < wlz|?. t2>0

As a consequence

(7.22) /O (

By the variation of constants formula we get

(B\) I-I’\ A\ é

)+ e sN ){)dssxu:[(?, t>0.

1
Ny =TV + / TNt —s)(GNCY = BY(BYN)TIN):N(s)ds. t>0.
0

where T (t) = exp((A~ = GNCV)t), t > 0. Taking norms and observing (7.5). (7.18) and
(7.22) we have

t
=Nl < et ([ + sup |G | +/ ICV N (s)l ds
) 0

+18y [

<M ([l + sup GV 2 [1eY N o))
‘ 0

(B.\' )‘H.\‘:‘\‘(‘S )l‘ ds)

t
+ ||Bnt’/2(/ (BN )TN =N ()| ds) )
0
< M (14 8/ (sup GV )| + x'/2|BI)) ) 1]
R
for all t > 0 and all N'. Finally we get

/Oxuz“'(t)ui'dt < conmst.|z||. z€ ZN,

where “const.” is not dependent on N. Now the result follows from a theorem by Datko
(see the version given in [22;Thm. 6.2}). 1

The following theorem is an immediate consequence of Theorem 7.4 and results given in
[7;Thm. 6.9} and [4:Thm. 2.2]. These results assume that the adjoint semigroups converge
strongly as is the case for our scheme.
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THEOREM 7.5. Suppose that (A,B) is stabilizable and (C, A) is detectable. Then the
unique solution TIN of (7.21) converges strongly to the unique solution 11 of (7.2). The
semigroups generated by A — BB*TI™ P® are exponentially stable uniformly with respect
to N > Ny for some Ny > 0. Moreover, for any € > 0 there exists an N(¢) such that

J(-B IV PNz(-),2) < J(u°,2) + € 2|2

for all 2 € Z and N > N(e), where u® = —B*IIz(-).
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APPENDIX A

In this appendix we state and prove some estimates involving the Padé-approximant
1—-1/2
1+7/2°

LEMMA A.l. Form > 1 and |z) < 2m

|e_,_(1—z/2m)m‘< %(J;;l)z(l-lf-%%)e‘]‘”((%)m—l) for Re:z < 0,
1+2/2m 14:|/2m for Rez > 0.

3
8m"‘l I 1—|z]/2m

PROOF: Let p = z/m. Then

€ " — (l:_:_/_.?_nl)m = (e=P)™ —~ (1 —p/2)m

1+ z/2m 15 p/2
(A.1) 2 |
= (e"‘P - }.—_.p/g) Zl e—kp(_l_.ﬂ)m—k_].

For [p] < 2

mu—a
\_/
|
)
e’
e

- 1-p/2 &
ik vy i g(

and therefore

For Rep < 0 we have

m-1 — /o m—k=— m-—1 9\ m-k—
E et (TR s e )T

k=0

R (= Rl

This together with (A.1) and (A.2) gives

‘e”’ _ (1 - z/2m)m| < l(lz_|)3l + |.:|/2m€__R,ez 1-—|z|/2m ((1 + |:|/‘2m)"‘ _ 1)
14 z/2m §\m/ 1—|z|/2m |z]/m 1-—]z]/2m

s 0 g () )
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for |z] < 2m and Rez < 0. In case Rep > 0 we get

-1 —mRep

1—p/2\m-k-1 T _ 1-¢
—kp kRep __
|Z (5o s ™= =m sm

k=0
Therefore using again (A.1) and (A.2) we get

- (i) < e T

for |z} < 2m and Rez > 0. I

N
LEMMA A.2. Let ax = |e"‘iv - (:T_:—%N—) . Then for |A| < p and N sufficiently large
(N >rp/2)

3,.314+pr/2N
8N2p r 1-pr/2N for Re/\ ZO,

ar < N
=P’ (1 4 ﬁ)e'”((%) - 1) for Re A < 0,

k=1,....N.
PRroOF: Let (nx = Akr/N. Then
—Cn 1 — (ni/2kN\ K .
o= 6T - 2T S N N.
ak ’6 (1+C1\'.k/2k) l’ k=1
For [A| < pwehave |(x x| £ phr/N and |(n k| < 2k for N > rp/2. Lemma A.1 for = = {y 1 .
implies )
252 r trp/N rf2N\"
L (14 g)ekrer¥ ((He2h) - 1) for Red <o,
10%r%k 1+pr/2N for Re A > 0.

8 N3 1-pr/2N
for |A\] < p and N > rp/2. The estimates of the lemma are an immediate consequence. §

a <

COROLLARY A.3. For any compact set ' C C there exists a constant ¢ = ¢(\") such that

sup {c,\ (8)— e’wl < o(K)( for all \'.

~r<6<0 \')
PROOF: Since E‘k\-:o M B is the first order interpolating spline for ¢*?. we have (see
[23; Thm. 2.6])
AV

sup |2 — § " * BY(8)] < const. _r_ 2 su
_r5£)50| ,; i )l - (1\) r<£)<o|d/\2

.

Then the result follows from the estimate

sup ‘Z( ME i—_*_‘—:i—g'%)k)B{\l

-r<9<0
; 1—=7A/2N & r
<  lerMr — (2L < t.(—=
- k=n1].f‘.?‘.zvle (1 + rA/2]\') = cons (]\')
forall \€ k' and N =1,2,... , which is an immediate consequence of Lemma A.2. |
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COROLLARY A.4. For any compact set K C C there exists a constant ¢ = ¢(I\') such that
AN(A) =~ AN € c(A’)(i,-)2 for € K and N=1,2,... .

PROOF: By definition of AN()) and A()) we have

|ANA) =AM <y sup [eX(8) — €,
-r<6<0

where 7 is the constant defined in Lemma 2.4. Then the result follows immediately from
Corollary A.3. §

LEMMA A.5. There exist positive constants Ko and ag such that for 0 < j < N, N =
1,2,...,and A€ Z,

J
< Koe®%|Im Al

1-rA/2N
14 rA/2N

provided a > ay. In fact Ko = ¢* and ap = $(In e 1) is a possible choice for K
and aq.

PROOF: Let ag = 2—;—'(1 - %)1/2. We consider the following three cases separately.
Case 1: 0<ReA<uw.A€%, ..
In this case the result follows immediately from

1—-r)/2N

Trayox | S1S e et imAl < e lm Al
r L.

Case 2: —ag < Re)d <0, € X,..
We put A = a +i3. The inequality a > —ao implies 1 4+ (r/2N)a > 0 and therefore

1-rA/2N|  ((1—ra/2N)? + (rﬂ/2N)2)]/2 . l-raj2xN
147228 \ (1 +ra/2N)2 +(r8/2N)? ~ 14 ra/2N°

For the function f(a) = (%—_:—:S/%R—r)'\.e"b, —2N/r <a £ 0. wehave f(0) =1and f'(a) 20

for —ag < a <0. Therefore fla) <1on —ag < a<0and

N
< e tReX < emabp )|, j=1.....N.

ll -r)/2N

f< 1-r)\/2N
1+rA/2N| ~

14 rA/2N

Case 3: ReA < —ap. A€ X, ..
Let A= ~a +13,a > ag. Then

) 1—7rA/2N

N o IN o N
—| =1-—%! S\t
1+ 7rA/2N 1+r)/2N! 14+ rA/2N|

< (1 2 \M_ (1)
—( +rwn/21\') ‘( +NTBI) '

(A.3)

PO

41




—

We claim that

4]\72
(A4) —I—m- <ba forde T ., a>a9, N=12,..
T

"

provided a is sufficiently large. Then we get from (A.3)

j N

1-r)\/2N
1+7A/2N

< (1+8)Y cebo < eohtm

Il —rA/2N b

1+rA/2N

S ’

for j =1,...,N and a sufficiently large.

We now prove (A.4). Since || > eb(9*%)| the estimate (A.4) is certainly satisfied if
4N?/r < baeb®e®®, a > ayg. Since the function ze? is increasing on = > 0, (A.4) is satisfied
if

4N?
(A.5) = < bagebooe®,
r

The definition of ag shows that (A.5) is equivalent to

r ONb,_ v 2
Y2 g T A Pen(= == ).

€

Using 7e~7 < ¢! for > 0. we see that the last inequality is satisfied for all A" provided
e®® > r(b(b - r)e)—], ie.,
r

nb(b—r) -1).

1
S -
a_b(l |




APPENDIX B
In this appendix we prove various rate estimates for the convergence of the resolvents
corresponding to the generators of the approximating semigroups S~ (¢} We choose x € R
such that 0 € p(A — k7). Then Theorem 4.1,b) shows that also 0 € p( AN — kTV) for N
sufficiently large, N > N;. We put

A=A-xkT and AN =AN -7V, N> N,.
Furthermore we introduce the notation

2 (]
Ee) = (o = kI)o(0) + 3 450(6) + [ 4(0)o(6)a8

=1

AN = AL, = L(X 1), A =M, - L(eM IL,).
The following formula will be of fundamental importance:
P""(i,\I — A" — (M - AN)1pN
= (M = AN)™ (PN(A - kT) = (AY = kT V)PV ) (AT - A)™!
= (M — AN)"1 AN pN (A-IPNA - I)(,\I — A7
= (A1 =A%) 1AL = kM) - D) PV (AT PR A= DT - 4)7

for A € p(A) and N > N;. Here we also have used ANz = ALYz for : € ZV. The
constants w, b and a are chosen as in Section 6.

LEMMA B.1. Let a =1 if (H) is satisfied, otherwise a = 1/2.
a) There exist positive constants ¢ and N such that

PN (AT — A)~! = (M = AN PN ||<c( =) [ Im A

foral A€ £, . and N > N,.

b) For any compact set ' C p(A) there exist positive constants ¢ and Ny such that
PN (AT = A)7F = (AL = AN PN < o)

forall \€ Kk and N > N,.

PROOF: For ¢ € H! (i.e., (¢(0), ) € dom A) we get

NA((0),0) = PN (L(p), ¢) = (L(), x™)

with (see Lemma 2.1,a))

IO
= Z - e(ty ).
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From (1.5) we obtain
(B.2) AT PR A(5(0),0) = A7 (L) x™N) = — (37 (0).w7),

where (observe AN(0) = A(0))
0
PN (6) = N (0) + / xN (r)dr,
8
- . 0
w0 = A0 (L) + L( [ xM(r)dr)).
It is obvious that ¥V (8) := [ xN(7)dr = Lo, BN(O)XV (tY) with
) = e(0) = o(td), k=1,...,N.
This shows XV = ¢(0) — ", where oV = Zf:o BY (V). Therefore

PN(0) = A0) L(p — ¢ + 9(0)) = A(0) Ly — o) = 2(0),
P = A0) e — o) = (0) + (0) — o™ = A(0) T L(p - ™) - .
This together with (B.2) gives

(B3) (AT'PNA-I)2(0),0) = —(A(0) (v — V), A0) L(g — ™) + 0 = V).

If (H) is satisfied we use

0

(B.4) \L(g - o™= ] AB)((8) — o™ (8)) db] < N AllL2lle — o~ L2,

-T

otherwise (¥ = |4y — &I, |+2J 1|45 |+f_ 1.4(6)| d8)

(B.5) IL(v = ™) < Flly = 2™l

In case of (B.4) we use ({23; Thm. 2.4])
le = " lls < const. el
in case of (B.5) ([23; Exercise (2.10)))

1/2
lo — ¢ lle<const( ) llell s

in order to get from (B.3)
(A7 PN A - I)(#(0),¢)]| < const. ( =) el an
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or, equivalently,

(B.6) 1A= PN A~ I aum a.2) < const. ()"
for N =1,2,....

From Theorem 4.1,a) and the estimate |A| < const.]Im )| for A € ¥, ., we obtain
(B.7) (01— %) a1 = w7 V) - )PN”L( < const.|Im AJ?

forall A € T, and N > N;. Using A(A] — A)™! = A(AI — A)~! — I we see that also
I AA — A)~Y|| € const.{Im AJ?||z]|

forall A € ¥, ., and : € Z. Therefore

(B.8) AT = A) " e¢z.dom 4y < const.]ImA? for A € T, ...

Now part a) of the lemma follows from (B.1) and (B.6)-(B.8).

In order to prove part b) we use Theorem 4.1,b) in order to see that the right-hand side
in the estimate (B.7) can be replaced by a constant as long as A € ' and N > N,. For
the estimate (B.8) this is obvious. B

LEMMA B.2. Let 8 =2 if (H) is satisfied, otherwise § = 3/2.
a) There exist positive constants ¢ and N; such that

“PN(/\I—A)_]Z—(/\I—.AN) lPI\ ”<c(7\) |Im/\| “ ”domA

forall A\ € T,..z€domA4and N > 7\’] If : = (n,¢) with € W1 (=r,0; R") then the
right-hand side of the estimate is ¢(% ) Im AP (In] + [lellwre ).

b) For any compact set ' C p(.A) there exist positive constants ¢ and N such that
1PN = )72z = (A = AN) 7 P2l < e(55) Nz llaom 4

forall A€ K,z € domA and N > N,. If z = (n,¢) with ¢ € W1°(—r 0;R") then the
right-hand side of the estimate is c(7\r—,)2(|n| + [[ellwie ).

PROOF: For z = (1,¢) we put (1(0), %) = (M — A)"(5,%). In analogy to (B.3) we get
(B.9) (AT'PNA-1)(w(0),¥) = ~(A0) L~ ¥™), A(0) ' L(y - vN) + ¥ — pT),
where vV = Zfl:o Bl ¢(t}). Using (4.1) we get (compare the derivation of (4.2))

1

BT < g

for e, .. N=12,....
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Then

1 0
< comst.||z|| for A € E, ..

This together with (4.8) gives

(B.10) [¥(8)] < const.||[Im M| ||z]] for A€ Z,, and —r <6< 0.

If ¢ is absolutely continuous we have by definition of ¢

(B.11) p=M—p, P=Ap-¢.

Observing |A| < const.|Im A| on &, .. we get from (B.11)

(B.12) ¥l e < const.|Im A|?||z]] for A € S,
and
(B.13) &)l L= < const.|Im AP (|n] + |lo|lwi.e) for A € Sq .o

if o € W1°(—r 0;R"), resp.

(B.14) [9]lL2 < const.[Im AP (In] + [[pllurz) for A € T,
if o € WH2(—r 0: R"). (B.14) specifically implies

(B.15) N2 < const.|Im AP ||z]ldoma  for A € Sq...

if 2 € dom A. Depending whether ¢ is in 172 or in H? we have the estimates
P g

(B.16) I = 9 llL2 < const.( N) ]l g2,
(B.17) [l = N[ < const-(—.) [ llwa.es,
(B.18) I = ¥Vl < const.(55) 19 ]1n2

(see [23; Thm 2.5, Thm 2.6 and Exercise (2.10)]). If (H) is satisfied we use (B.16) together
with (B.14), otherwise we have to take (B.17) or (B.18) together with (B.13) or (B.14),
respectively, in order to get the estimates of part a) from (B.9) and (B.7).

The proof for part b) is analogous but simpler. As in the proof of Lemma B.1 one has to
use the fact that the right-hand side of (B.7) can be replaced by a constant for A € I'.
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